`

Java NIO使用及原理分析(三) (转)

阅读更多

转载自:李会军•宁静致远

 

在上一篇文章中介绍了缓冲区内部对于状态变化的跟踪机制,而对于NIO中缓冲区来说,还有很多的内容值的学习,如缓冲区的分片与数据共享,只读缓冲区等。在本文中我们来看一下缓冲区一些更细节的内容。

缓冲区的分配

在前面的几个例子中,我们已经看过了,在创建一个缓冲区对象时,会调用静态方法allocate()来指定缓冲区的容量,其实调用 allocate()相当于创建了一个指定大小的数组,并把它包装为缓冲区对象。或者我们也可以直接将一个现有的数组,包装为缓冲区对象,如下示例代码所示:

public class BufferWrap {

    public void myMethod()
    {
        // 分配指定大小的缓冲区
        ByteBuffer buffer1 = ByteBuffer.allocate(10);
        
        // 包装一个现有的数组
        byte array[] = new byte[10];
        ByteBuffer buffer2 = ByteBuffer.wrap( array );
    }
}

 缓冲区分片

在NIO中,除了可以分配或者包装一个缓冲区对象外,还可以根据现有的缓冲区对象来创建一个子缓冲区,即在现有缓冲区上切出一片来作为一个新的缓冲区,但现有的缓冲区与创建的子缓冲区在底层数组层面上是数据共享的,也就是说,子缓冲区相当于是现有缓冲区的一个视图窗口。调用slice()方法可以创建一个子缓冲区,让我们通过例子来看一下:

import java.nio.*;

public class Program {
    static public void main( String args[] ) throws Exception {
        ByteBuffer buffer = ByteBuffer.allocate( 10 );
        
        // 缓冲区中的数据0-9
        for (int i=0; i<buffer.capacity(); ++i) {
            buffer.put( (byte)i );
        }
        
        // 创建子缓冲区
        buffer.position( 3 );
        buffer.limit( 7 );
        ByteBuffer slice = buffer.slice();
        
        // 改变子缓冲区的内容
        for (int i=0; i<slice.capacity(); ++i) {
            byte b = slice.get( i );
            b *= 10;
            slice.put( i, b );
        }
        
        buffer.position( 0 );
        buffer.limit( buffer.capacity() );
        
        while (buffer.remaining()>0) {
            System.out.println( buffer.get() );
        }
    }
}

 在该示例中,分配了一个容量大小为10的缓冲区,并在其中放入了数据0-9,而在该缓冲区基础之上又创建了一个子缓冲区,并改变子缓冲区中的内容,从最后输出的结果来看,只有子缓冲区“可见的”那部分数据发生了变化,并且说明子缓冲区与原缓冲区是数据共享的,输出结果如下所示:

 

只读缓冲区

只读缓冲区非常简单,可以读取它们,但是不能向它们写入数据。可以通过调用缓冲区的asReadOnlyBuffer()方法,将任何常规缓冲区转 换为只读缓冲区,这个方法返回一个与原缓冲区完全相同的缓冲区,并与原缓冲区共享数据,只不过它是只读的。如果原缓冲区的内容发生了变化,只读缓冲区的内容也随之发生变化:

import java.nio.*;

public class Program {
    static public void main( String args[] ) throws Exception {
        ByteBuffer buffer = ByteBuffer.allocate( 10 );
        
        // 缓冲区中的数据0-9
        for (int i=0; i<buffer.capacity(); ++i) {
            buffer.put( (byte)i );
        }

        // 创建只读缓冲区
        ByteBuffer readonly = buffer.asReadOnlyBuffer();
        
        // 改变原缓冲区的内容
        for (int i=0; i<buffer.capacity(); ++i) {
            byte b = buffer.get( i );
            b *= 10;
            buffer.put( i, b );
        }
        
        readonly.position(0);
        readonly.limit(buffer.capacity());
        
        // 只读缓冲区的内容也随之改变
        while (readonly.remaining()>0) {
            System.out.println( readonly.get());
        }
    }
}

 如果尝试修改只读缓冲区的内容,则会报ReadOnlyBufferException异常。只读缓冲区对于保护数据很有用。在将缓冲区传递给某个 对象的方法时,无法知道这个方法是否会修改缓冲区中的数据。创建一个只读的缓冲区可以保证该缓冲区不会被修改。只可以把常规缓冲区转换为只读缓冲区,而不能将只读的缓冲区转换为可写的缓冲区。

直接缓冲区

直接缓冲区是为加快I/O速度,使用一种特殊方式为其分配内存的缓冲区,JDK文档中的描述为:给定一个直接字节缓冲区,Java虚拟机将尽最大努 力直接对它执行本机I/O操作。也就是说,它会在每一次调用底层操作系统的本机I/O操作之前(或之后),尝试避免将缓冲区的内容拷贝到一个中间缓冲区中 或者从一个中间缓冲区中拷贝数据。要分配直接缓冲区,需要调用allocateDirect()方法,而不是allocate()方法,使用方式与普通缓冲区并无区别,如下面的拷贝文件示例:

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class Program {
    static public void main( String args[] ) throws Exception {
        String infile = "c:\\test.txt";
        FileInputStream fin = new FileInputStream( infile );
        FileChannel fcin = fin.getChannel();
        
        String outfile = String.format("c:\\testcopy.txt");
        FileOutputStream fout = new FileOutputStream( outfile );    
        FileChannel fcout = fout.getChannel();
        
        // 使用allocateDirect,而不是allocate
        ByteBuffer buffer = ByteBuffer.allocateDirect( 1024 );
        
        while (true) {
            buffer.clear();
            
            int r = fcin.read( buffer );
            
            if (r==-1) {
                break;
            }
            
            buffer.flip();
            
            fcout.write( buffer );
        }
    }
}

 内存映射文件I/O

内存映射文件I/O是一种读和写文件数据的方法,它可以比常规的基于流或者基于通道的I/O快的多。内存映射文件I/O是通过使文件中的数据出现为 内存数组的内容来完成的,这其初听起来似乎不过就是将整个文件读到内存中,但是事实上并不是这样。一般来说,只有文件中实际读取或者写入的部分才会映射到内存中。如下面的示例代码:

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class Program {
    static private final int start = 0;<span style="font-family:FangSong_GB2312;font-size:13px;">
    static private final int size = 1024;
    
    static public void main( String args[] ) throws Exception {
        RandomAccessFile raf = new RandomAccessFile( "c:\\test.txt", "rw" );
        FileChannel fc = raf.getChannel();
        
        MappedByteBuffer mbb = fc.map( FileChannel.MapMode.READ_WRITE,
          start, size );
        
        mbb.put( 0, (byte)97 );
        mbb.put( 1023, (byte)122 );
        
        raf.close();
    }
}</span>

 关于缓冲区的细节内容,我们已经用了两篇文章来介绍。在下一篇中将会介绍NIO中更有趣的部分Nonblocking I/O。

(未完待续)

分享到:
评论

相关推荐

    java NIO技巧及原理

    java NIO技巧及原理解析,java IO原理,NIO框架分析,性能比较

    Java NIO原理 图文分析及代码实现

    Java NIO原理 图文分析及代码实现

    Java NIO原理分析及代码实例

    NULL 博文链接:https://dengqsintyt.iteye.com/blog/2083316

    Java NIO——Selector机制解析三(源码分析)

    NULL 博文链接:https://goon.iteye.com/blog/1775421

    Java NIO原理图文分析及代码实现

    本文主要介绍Java NIO原理的知识,这里整理了详细资料及简单示例代码和原理图,有需要的小伙伴可以参考下

    java nio 原理浅析

    本文将主要分析Netty实现方面的东西,由于精力有限,本人并没有对其源码...对于Netty使用者来说,Netty提供了几个典型的example,并有详尽的API doc和guide doc,本文的一些内容及图示也来自于Netty的文档,特此致谢。

    Java NIO工作原理的全面分析

    JDK 1.4 中引入的新输入输出 (NIO) 库在标准 Java 代码中提供了高速的、面向块的 I/O。本实用教程从高级概念到底层的编程细节,非常详细地介绍了 NIO 库。您将学到诸如缓冲区和通道这样的关键 I/O 元素的知识,并...

    【图解】深入分析Java IO&NIO;工作机制

    【图解】深入分析Java I_O工作机制,从传统IO分析至NIO,调优以及原理,不可用于商业用途,如有版权问题,请联系删除!

    Java思维导图xmind文件+导出图片

    Nginx Location ReWrite 等语法配置及原理分析 Nginx提供https服务 基于Nginx+lua完成访问流量实时上报Kafka的实战 Netty 高性能NIO框架 IO 的基本概念、NIO、AIO、BIO深入分析 NIO的核心设计思想 Netty产生...

    Java NIO Selector用法详解【含多人聊天室实例】

    主要介绍了Java NIO Selector用法,结合实例形式分析了Java NIO Selector基本功能、原理与使用方法,并结合了多人聊天室实例加以详细说明,需要的朋友可以参考下

    最新Java面试题视频网盘,Java面试题84集、java面试专属及面试必问课程

    面试题包含了不同技术层面的面试问题,同时也能对一些没有面试开发经验的小白给予不可估量的包装, 让你的薪水绝对翻倍, 本人亲试有效.Java面试题84集、java面试专属及面试必问课程,所有的面试题有视屏讲解, 解答方案....

    core-nio:nio底层实现原理(另外还有aio的功能)

    core-niojava nio 客户端和服务端交互实现主要通过长连接的方式进行数据交换,采用多路复用技术,同步非阻塞模式。主要有以下几个概念Channel(渠道,类似于高速公路可以处理很多线程io);Selector(选择器,可以...

    JAVA上百实例源码以及开源项目

     基于JAVA的UDP服务器模型源代码,内含UDP服务器端模型和UDP客户端模型两个小程序,向JAVA初学者演示UDP C/S结构的原理。 简单聊天软件CS模式 2个目标文件 一个简单的CS模式的聊天软件,用socket实现,比较简单。 ...

    JAVA上百实例源码以及开源项目源代码

     基于JAVA的UDP服务器模型源代码,内含UDP服务器端模型和UDP客户端模型两个小程序,向JAVA初学者演示UDP C/S结构的原理。 简单聊天软件CS模式 2个目标文件 一个简单的CS模式的聊天软件,用socket实现,比较简单。 ...

    2019java亲生经历面试题答案解析准备.zip

    8.高性能网络编程必备技能之IO与NIO阻塞分析 10.微服务架构之Spring Cloud Eureka 场景分析与实战 11.高性能必学之Mysql主从架构实践 13.RPC底层通讯原理之Netty线程模型源码分析 14.分库分表之后分布式下如何保证ID...

    疯狂JAVA讲义

    1.2 Java的竞争对手及各自优势 4 1.2.1 C#简介和优势 4 1.2.2 Ruby简介和优势 4 1.2.3 Python的简介和优势 5 1.3 Java程序运行机制 5 1.3.1 高级语言的运行机制 6 1.3.2 Java程序的运行机制和JVM 6 1.4 开发...

    Netty权威指南 第2版 带书签目录 完整版

    《Netty 权威指南(第2 版)》适合架构师、设计师、软件开发工程师、测试人员以及其他对JavaNIO 框架、Netty 感兴趣的相关人士阅读,通过《Netty 权威指南(第2 版)》的学习,读者不仅能够掌握Netty 基础功能的使用...

    精通并发与 netty 视频教程(2018)视频教程

    47_Netty服务器与客户端编码模式回顾及源码分析准备 48_Netty与NIO系统总结及NIO与Netty之间的关联关系分析 49_零拷贝深入剖析及用户空间与内核空间切换方式 50_零拷贝实例深度剖析 51_NIO零拷贝彻底分析与Gather...

Global site tag (gtag.js) - Google Analytics